Cost Benefit of Insulated Concrete Forms (ICF)

Two (2) Continuing Education Hours

Wisconsin Department of Safety and Professional Services (DSPS)
Course Approval #18577

Approved Continuing Education for Wisconsin Dwelling Contractors
Table of Contents

Cost Benefit of Insulated Concrete Forms (ICF)

- Introduction .. 3
- Housing Market Perspectives .. 3
 - Cost Vs. Benefits Testimonials .. 3
 - Tornado Survival .. 4
 - Hurricanes .. 4
 - Floods .. 4
 - Earthquakes .. 5
- Cost .. 5
 - Construction Cost .. 5
- Benefits .. 7
 - Understanding Risk ... 7
 - Managing Risk ... 9
 - Safety And Hazard Mitigation Benefits 9
 - Racking Strength .. 9
 - Bending Strength ... 10
 - Compressive Strength ... 11
 - Wind-Borne Debris Impact Resistance 11
 - Fire Resistance ... 12
 - Durability ... 12
 - Energy Efficiency .. 12
 - Noise Control ... 12
- Cost-Benefit Evaluation ... 13
 - Monthly Costs .. 14
 - Cost Comparison Based On Equivalent Performance 15
- Conclusions ... 15
- Quiz Questions .. 16
Cost Benefit of ICF

LEARNING OBJECTIVES

Upon completion of this course, the student will be able to:

1. Become familiar with the many benefits gained through the use of insulated concrete forms (ICF) in residential and building construction

2. Learn objective information on the cost of typical ICF home construction relative to standard housing construction

3. Discuss credible information on the benefits of ICF construction relative to standard home construction

4. Evaluate and compare cost benefits of ICF and wood-frame house construction

Introduction

The concept of assessing the value of something is as much an art as it is a science. This observation is particularly true of decisions related to a new home purchase. One person may determine “best” value by lowest cost or highest quality while another makes a decision purely on intangibles (i.e., comfort, aesthetics, “peace of mind”). Regardless of the method to determine value, a homebuyer, builder, or designer should make informed decisions about house construction options. This course provides for that need by evaluating the costs and benefits of using Insulating Concrete Forms (ICF) in the construction of a home or other similar buildings.

HOUSING MARKET PERSPECTIVES

One important factor that is considered in making any purchase is the experience of other users of a product. In this section, the experience and opinions of various builders, designers, and homeowners are presented to assist in judging the costs and benefits of ICF construction. The following information has been gathered from various sources including news articles, reports, web pages, and personal communications. While this information is purely anecdotal, it does represent considerations important to understanding the value of ICF construction as perceived through the actual experience of homebuyers, builders, engineers, and others who have used the product. Negative experiences were not usually found in the available sources, nor were they specifically sought in this study.

COST VS. BENEFITS TESTIMONIALS

“Our highest [utility] bill in a month was $110 in summer. Our neighbors hit $200-$300 in August and September.” (Source: Survey of ICF homeowners conducted by Dr. Pieter VanderWerf at Boston University as reported in Concrete Homes Newsletter, Skokie, IL.) This sentiment is shared by many ICF homeowners who are willing to pay a little extra on the front end for downstream energy cost savings, not to mention the benefits of added safety and comfort.

“There’s a certain degree of protection that you can build into every house,” says Robert Hannon, a plans examiner for the City of Coral Springs in Florida. “The question is how much the homeowner wants to pay for when they’re building the house.” (Source: PBF Magazine, November 15, 1999.)

Recent market data shows evidence of increased use of ICF construction in the housing market and even production builders have made attempts to incorporate ICF construction on the scale of entire developments. One such builder/developer reports that “while ICF construction is viable, the market interest in the benefits of ICF construction [at additional cost] does not appear to generate the volume of sales necessary to support a production building operation.”
The house shown in Figure 1 survived a tornado strike and resisted a blow from a snapped tree. Adjacent homes were destroyed. This ICF house belongs to a family in Washington, Iowa. The family’s two children were in the home when the tornado hit. The owner’s response to this experience may be summed up by the statement “The kids didn’t even hear the tree hit the house.” (Source: Reward Wall Systems, www.rwsinc.com/news_tornado.htm.)

Figure 1: Tree impact to an ICF house with no damage to the ICF wall caused by the tornado.

The Urbana, Illinois, house shown in Figure 2 survived a direct hit from an F2-F3 tornado which tore a substantial part of the roof apart, but the ICF wall construction remained intact. The ICF walls protected the owners and their pets from the fierce wind and debris even when the roof was gone. Adjacent homes suffered 100 percent damage. “When the city engineer came out to look, he was amazed,” stated the owner. (Source: Reward Wall Systems.)

Figure 2: An ICF home survives a direct tornado strike with windows, siding, and roof destroyed.

HURRICANES

“I figured it couldn’t hurt to learn about a building system that’s both strong and energy efficient. On the barrier islands where I build, we feel the effects of almost every hurricane and nor’easter that hits the East Coast...Insulating walls rated to withstand 200-mph winds and promising to cut electric bills in half might sell themselves,” says Ralph Woodard, a builder on North Carolina’s Outer Banks. (Source: Journal of Light Construction, June 1998.)

On Long Beach Island, New Jersey, homeowner Stuart Stainecker explains, “The most prominent reason I chose to build my Barnegat Light home with Blue Maxx™ insulated concrete wall system is because of the product’s resistance against tropical storms, hurricanes, and flooding.”

“We have a responsibility to build safe homes for consumers, and this is the safest product to do that with,” says Guy Collins, a developer in Myrtle Beach, SC. (Source: www.pca.org, September 24, 1999, press release, Skokie, IL).

FLOODS

In a flood that exceeded the 100-year level for the Guadalupe River in Texas, an ICF home (see Figure 3) withstood rushing flood waters and debris while other homes were torn from their foundations and heavily damaged. “If this had been a conventional home [the debris] would have gone straight through,” said the owner, Earl Roberts, who goes on to say, “It truly held up well.” (Source: PBF Magazine, April 1, 1999.)
Ezekiel Enterprises, LLC
DSPS Provider No. 1362032

Cost Benefit of Insulated Concrete Forms (ICF)

Figure 3: An ICF home withstands flood waters of Guadalupe River, Texas.

EARTHQUAKES

According to Gene St. Onge, the structural engineer of an ICF home in earthquake-prone California, “With a little more concrete reinforcement and strengthening of the roof and floor, incurring not that much more expense, a structure can be designed to withstand major quake damage using an ICF system.” (Source: PBF Magazine, August 15, 1999.)

COST

GENERAL

There are essentially two aspects to considering cost or “affordability” in purchasing a house. First cost, including all costs that affect the purchase price of the home, is important to consider because it directly influences the buyer’s qualification for mortgage, down payment amount, and monthly mortgage payments. Ownership, or long-term costs, is also important to consider (given that the buyer is able to afford the first cost). Some features that increase first cost may bring future benefits in terms of reduced monthly costs for certain items such as energy consumption, maintenance, and insurance premiums. This section provides information to help assess first (construction) costs of ICF construction and standard wood-frame construction. Monthly or long-term costs are evaluated in Section 5, Cost-Benefit Evaluation.

CONSTRUCTION COST

First, and foremost, the cost of ICF construction (like any other type of building construction) is very dependent on the familiarity of the contractor and trades people with the product. In most cases, there is a “learning curve” in any new construction process that requires building several houses to eventually economize the overall approach to construction. Therefore, the experience of the contractor is an important factor that will have an impact on cost and quality. Fortunately, ICF construction is a simple method of construction using a system of conventional materials (i.e., concrete, reinforcement, and insulation) and it is easily learned and understood by contractors, trades people, and “do-it-yourselfers”.

There are several methods to obtain information on construction cost. One of the most reliable methods is to conduct detailed time-and-motion studies of actual construction. Fortunately, such a study has been done on a number of ICF homes and, in some cases, identical wood-frame homes to give side-by-side comparisons. The findings from this type of study are summarized in Table 1 below. While the costs are specific to the sites studied, some general observations can be made from the data as a whole:

- ICF Construction does cost more than typical wood-frame home construction;
- On average, the additional cost of ICF construction (per square foot of floor area) is about $4 when compared to typical wood-frame house construction; and
- Actual cost differences vary depending on the size and complexity of the home, the type of ICF used, and other site-specific factors; thus, the additional cost of ICF construction relative to wood-frame construction may typically range from $3 to $5 per square foot.
TABLE 1 COST PER SQUARE FOOT FROM TIME-AND-MOTION AND FIELD COST STUDIES

<table>
<thead>
<tr>
<th>HOUSE TYPE, SIZE, AND ESTIMATED SALES PRICE</th>
<th>COST OF WALL CONSTRUCTION (per square foot of wall area) [floor area]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICF</td>
</tr>
<tr>
<td>Economy One-story/1,008 sq ft $90,000 to $100,000</td>
<td>$4.56</td>
</tr>
<tr>
<td></td>
<td>[$6.19]</td>
</tr>
<tr>
<td>Custom One-story/two-story mix/3,894 sq ft</td>
<td>$5.95</td>
</tr>
<tr>
<td></td>
<td>[$7.79]</td>
</tr>
<tr>
<td>Custom One-story/2,775 sq ft</td>
<td>$6.65</td>
</tr>
<tr>
<td></td>
<td>[$6.46]</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>$5.72</td>
</tr>
<tr>
<td></td>
<td>[$6.81]</td>
</tr>
</tbody>
</table>

A second and common method to estimate construction cost is through the use of estimating guide books such as RSMeans Residential Cost Data, 19th Annual Edition. This source of construction cost data allows for a detailed assessment of the cost of house construction. However, it does not necessarily account for the nuances of non-traditional construction methods. Thus, such an approach may often over- or underestimate actual costs depending on a number of job-specific variables, namely the experience of the contractor with the product, local availability, and cyclic market trends (i.e., demand and supply). For example, RSMeans cost data for a traditional 2x4 wood-frame wall and a traditional concrete wall with furring and insulation are shown in the Table 2. Unlike the data for the test site above, indirect cost impacts to the electric, HVAC, or plumbing installations are not considered. In addition, other design changes such as wall thickness may add cost to windows and doors (i.e., need extension jambs). Therefore, these numbers should not be blindly used for estimating the actual cost of ICF construction for specific cases. The cost estimates are, however, not very different from the cost figures reported in actual field studies. Again, the purpose here is to give a general level of expectation for cost differences between typical wood-frame construction and ICF construction.

TABLE 2 ESTIMATES USING RESIDENTIAL COST DATA

<table>
<thead>
<tr>
<th>WALL CONSTRUCTION</th>
<th>COST PER SQUARE FOOT OF GROSS WALL AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>4" thick concrete wall²</td>
<td>$5.63</td>
</tr>
<tr>
<td>2x4 wood-frame wall¹</td>
<td>$2.60</td>
</tr>
<tr>
<td>Cost Difference</td>
<td>$3.03</td>
</tr>
</tbody>
</table>

Notes: ¹Table values are based on application of RSMeans, Residential Cost Data, 19th Annual Edition.
²Estimate based on lightly reinforced basement wall with thickness adjusted to 4" from 8" wall thickness, 1x2 furring both sides added, form rental/cost not included, two layers of 2" polystyrene insulation added.
¹Typical wood-frame wall includes 2x4 studs at 16"oc, 7/16" OSB sheathing, and R13 fiberglass batt insulation.

The reader is again reminded that the actual cost for any specific house will depend on a variety of factors which may not be represented by the “ballpark” data outlined above. Therefore, actual costs are ultimately defined by actual bids from real contractors and real homes. However, pricing that varies substantially from the figures shown above should be scrutinized. The above cost data is relevant to the value of money in the 1997-99 time frame and may need adjustment; the
proportionate differences should, however, remain relatively constant with time. Other factors that can easily alter the above cost data include significant changes in construction practice, in material attributes, and cost of raw materials (i.e., lumber vs. concrete).

BENEFITS

STRUCTURAL SAFETY AND HAZARD MITIGATION

UNDERSTANDING RISK

Individuals are subject to a variety of risks or hazards that can result in health problems, injury, or even death. The magnitude of common risks in terms of the chance of any one of them happening over the lifetime of an individual is shown Figure 4. It can be seen that certain risks are much more likely to happen than others. These higher risks are often what drive “calculated” risk-management decisions of the public or individuals. However, for some, risks at the lower end of the scale (often referred to as “Acts of God”) are perceived as being important based on unique personal experience or perception. It should be noted that the values in Figure 4 represent a national average, whereas certain individuals, depending on life-style and where they live, may be subject to significantly higher or lower risks in some categories. For example, people living in the mid-western U.S. will not experience a hurricane, but severe thunderstorms and tornadoes are common threats (regional reasons).

Figure 4

Chart of Various Consumer Risks

(*Chance of happening per individual life-time based on national averages and a life-expectancy of 75 years; includes deaths unrelated to housing) Reference: Residential Structural Design Guide (HUD, 2000)
Of similar interest is the chance of injury by cause. While the availability of data is limited, one useful example involves risk of injury due to a tornado. As shown in Figure 4, the estimated chance of death by tornado is about 0.002 percent (i.e., two thousandths of a percent chance in a lifetime of 75 years). However, the chance of experiencing an injury from a tornado incident (over a lifetime of 75 years) is about 0.04 percent (i.e., four hundredths of a percent). Thus, it can be seen that the risk of injury by certain causes may be several times greater than the risk of death by the same cause.

While emotional decisions transfer into the home purchasing process, they cannot be predicted from one individual to the next and the ‘market’ is often fickle in this respect. Conversely, regional differences in certain risks are much more predictable and can be based on historic climatic and geologic data. Regional differences in risk, as related to natural hazards, are shown in the following figures.

The geographic distribution of risk in the figures illustrates why, as a national average, some risks are of little concern to the overall population but have significant local or regional impact. For example, people in the mid-western region known as “tornado alley” may be more inclined to consider a strong house construction method, such as provided by Insulating Concrete Forms. Similar trends in public or individual risk management decisions can be expected for other regional risks, such as hurricanes and earthquakes.
MANAGING RISK

Risk management is really a money management decision regarding the design and purchase of a home. It is perfectly normal to purchase a home that meets the minimum requirements (and implied acceptable risk level) of the local building code. However, additional investment can be made to enhance a building’s “survivability” in extreme hazards. This enhancement can be achieved by designing a more resistant structure of a certain construction type or by electing to use a type of construction that is inherently more resistant to certain hazards of interest. In some cases, it may be most practical or economical to use a stronger material or construction technique in only part of the structure (i.e., use of a “hardened room” for an in-home tornado shelter).

SAFETY AND HAZARD MITIGATION BENEFITS

There is substantial “real world” evidence that an ICF home has a greater chance of surviving certain natural hazards with less damage (refer to ‘Testimonials’ section) than a typical wood home. This experience is also confirmed in laboratory structural tests and design theory. This section explores the structural safety benefits of ICF construction.

RACKING STRENGTH

Certain walls in a building experience in-plane shear or “racking” from lateral (i.e., sideways) loads created by wind and earthquakes. The racking strength of these walls prevent the building from collapsing or being pushed over by wind or earthquake forces. Data comparing racking strength of ICF walls and wood-frame walls are shown in Table 3.

<table>
<thead>
<tr>
<th>WALL CONSTRUCTION</th>
<th>PEAK UNIT SHEAR (pounds per foot of wall length)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood-Frame</td>
<td>300 to 2,000</td>
</tr>
<tr>
<td>ICF</td>
<td>2,500 to 8,500</td>
</tr>
</tbody>
</table>

Notes:
1. Comparisons are based on a 4-foot wall segment or “panel” length and an 8-foot wall height.
2. Longer wall segments can result in higher values for both ICF and wood-frame wall constructions. Conversely, shorter (more narrow) wall segments without compensating structural enhancements can result in significantly lower values for both construction types.
3. Values can vary significantly depending on actual wall configuration, amount of supported dead load, amount of openings, and special detailing such as connections in wood framing and reinforcement in ICF walls.

IN-HOME TORNADO SHELTERS

ROLE OF BUILDING CODES:

Building codes are comprised of minimum requirements that represent a balance of many competing interests, not the least of which are affordability and safety. The building code merely establishes a minimum level of risk that is considered to be socially acceptable on national and local or regional scales. It is always possible to build a home that exceeds the minimum building code requirements and, therefore, further reduce certain risks below the accepted norms. However, it must be understood that any and all risks cannot be “zeroed” or eliminated.

IN-HOME TORNADO SHELTERS

SAFETY AND HAZARD MITIGATION BENEFITS

There is substantial “real world” evidence that an ICF home has a greater chance of surviving certain natural hazards with less damage (refer to ‘Testimonials’ section) than a typical wood home. This experience is also confirmed in laboratory structural tests and design theory. This section explores the structural safety benefits of ICF construction.

RACKING STRENGTH

Certain walls in a building experience in-plane shear or “racking” from lateral (i.e., sideways) loads created by wind and earthquakes. The racking strength of these walls prevent the building from collapsing or being pushed over by wind or earthquake forces. Data comparing racking strength of ICF walls and wood-frame walls are shown in Table 3.

<table>
<thead>
<tr>
<th>WALL CONSTRUCTION</th>
<th>PEAK UNIT SHEAR (pounds per foot of wall length)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood-Frame</td>
<td>300 to 2,000</td>
</tr>
<tr>
<td>ICF</td>
<td>2,500 to 8,500</td>
</tr>
</tbody>
</table>

Notes:
1. Comparisons are based on a 4-foot wall segment or “panel” length and an 8-foot wall height.
2. Longer wall segments can result in higher values for both ICF and wood-frame wall constructions. Conversely, shorter (more narrow) wall segments without compensating structural enhancements can result in significantly lower values for both construction types.
3. Values can vary significantly depending on actual wall configuration, amount of supported dead load, amount of openings, and special detailing such as connections in wood framing and reinforcement in ICF walls.
In general, ICF wall construction provides 5 to 10 times the racking resistance of conventional wood-frame walls. To provide resistance comparable to the lowest strength ICF wall construction, a wood-frame wall construction using 3x4 studs, 1/2-inch-thick structural sheathing, 10d common nails at 2 inches on center, and special connection hardware to restrain the walls from overturning is necessary. The construction of such a wall adds about $2.00 per square foot of gross wall area which reduces the average cost difference in comparison to ICF wall construction by more than 50 percent (refer to Table 1). It is not practical or feasible to achieve the higher racking strength capability of ICF walls by further enhancement to light-frame wood construction.

While it is not necessary to have the racking strength potential of ICF walls to meet minimum building code requirements, the added strength does have benefit in terms of safety and protection of building occupants in extreme events. For example, conventional wood-frame buildings often begin to suffer damage at wind speeds typical of severe hurricanes (i.e., 130 mph gust or higher). At wind speeds of 160 mph gust or higher (a “Category 5” or catastrophic hurricane event), conventional and even moderately reinforced wood-frame homes can begin to suffer major structural damage, including collapse. In excessive wind speeds that could be expected in moderate to severe tornadoes, wood-frame homes are frequently totally destroyed. In contrast, with 5 or more times the in-plane shear resistance, a typical home with ICF walls could be expected to withstand “Category 5” hurricane winds (not considering storm surge effects seen by coastal homes) and even a moderate to severe tornado with minimal damage due to wind pressure on the building and the associated racking loads on walls. While the risk-benefit is small because the risk of a direct tornado strike or catastrophic hurricane is relatively low (see Figure 4), the added strength of ICF construction provides exceptional protection against extreme wind hazards. Similar benefits are found in the resistance of ICFs to forces that may be experienced by buildings located in velocity flow zones of coastal or riverine flood plains. It should be noted, however, that flood areas constitute unique and localized hazards that can often best be avoided by site selection and appropriate land management practices.

It is also important to note that ICF walls are stiffer than wood-frame walls. Thus, greater racking force is required to deform the wall which helps to protect non-structural components, such as wall finishes, windows, and doors from damage. However, in seismic conditions, heavy and stiff ICF walls generate greater racking loads than wood-frame walls. This effect offsets some of the racking strength benefit of ICF construction relative to light-frame wood construction in regions prone to earthquakes.

BENDING STRENGTH

Building walls experience out-of-plane bending loads from wind, seismic, flood water, and earth pressure (i.e., basement foundation wall). Data on bending strength of ICF walls and wood-frame walls are shown in Table 4.

<table>
<thead>
<tr>
<th>WALL TYPE</th>
<th>ULTIMATE BENDING LOAD (pounds per square foot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICF Construction (various types/thicknesses)</td>
<td>200 to 400</td>
</tr>
<tr>
<td>2x4 Wood Construction (various species, facings, and stud spacings)</td>
<td>50 to 100</td>
</tr>
</tbody>
</table>
A 200 to 400 psf ultimate bending load can be associated with a 280 to 395 mph (gust) wind event which implies an ability to withstand a severe tornado (i.e., F3 or higher by Fujita tornado scale). A wood-frame wall provides bending resistance comparable to a 140 to 200 mph (gust) wind speed which implies an ability to withstand a moderate tornado (i.e., F2 or less by Fujita tornado scale). While this level of protection is clearly sufficient relative to typical building code requirements, the added strength of ICF walls in bending does provide enhanced protection in extremely rare (i.e., low risk) events such as a direct strike by a severe tornado. While the possibility of a near or direct strike of a tornado exists in many parts of the United States (see Figure 5), the risk of such an incident to any one home is only about once in a hundred thousand years or more on average. The fact that several hundred homes and buildings are affected by tornadoes in any given year is then the result of the millions of existing buildings that each have exposure to this slight risk (see Figure 4).

COMPRESSION STRENGTH

Building walls experience compressive loads from the weight of the building itself as well as the weight of contents, including people and furnishings. Therefore, the compressive strength of a wall prevents the collapse of a building when heavily loaded with people or contents. Data comparing the compressive strength of ICF walls and wood-frame walls is shown in Table 6. While it is possible to upgrade the impact resistance of standard wood-frame wall construction to levels suitable for protection against potential debris in moderate hurricanes and less severe tornadoes, it is impractical to upgrade standard wood-frame wall construction to give comparable performance to ICF walls. It should be noted that the ICF wall data in Table 6 applies to ICF types that result in a “solid” concrete wall.

TABLE 5

<table>
<thead>
<tr>
<th>WALL CONSTRUCTION</th>
<th>MAXIMUM COMPRESSIVE LOAD (pounds per foot of wall length)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood Frame (various 2x4 configurations)</td>
<td>4,500 to 10,000</td>
</tr>
<tr>
<td>ICF (4- to 6-inch wall thickness)</td>
<td>60,000 to 100,000</td>
</tr>
</tbody>
</table>

Note: Values are based on unpublished test data and analysis by NAHB Research Center, Inc.

Wind-Borne Debris Impact Resistance

ICF wall systems have been tested for wind-borne debris resistance by subjecting them to the impact of a 2x4 wood stud traveling at speeds of up to 100 mph. This level of impact is considered to be representative of the nature of impacts that could be expected in a severe tornado (i.e., 250 mph wind speed). Data on the wind-borne debris impact resistance of ICF walls and wood-frame walls is shown in Table 6.
TABLE 6
WIND-BORNE DEBRIS IMPACT DATA

<table>
<thead>
<tr>
<th>WALL CONSTRUCTION</th>
<th>IMPACT RESISTANCE</th>
</tr>
</thead>
</table>
| Wood Frame (various typical constructions) | 8 to 26 mph (9 lb 2x4)
| ICF (4” and 6” flat and waffle-grid) | 100+ mph (15 lb 2x4) |

Notes:
1 Based on testing performed by Clemson University for the Region IV Mitigation Division of the Federal Emergency Management Agency, Atlanta, GA.
2 Based on Investigation of Wind Projectile Resistance of Insulating Concrete Form Homes, Portland Cement Association, Skokie, IL.

FIRE RESISTANCE

Fire resistance is important to the protection of occupants from fire and to allow sufficient time for warning and evacuation. Concrete walls have superior fire resistance in comparison to most other building materials. Solid concrete ICF walls can generally sustain as much as four hours of extreme fire exposure (as reported at www.rwsinc.com), whereas typical wood-frame walls in houses generally do not exceed a one-hour fire rating. For housing, building codes typically require a minimum 15-minute rating with the exception of special fire separation requirements for multifamily construction, apartments, and townhouse units, where a minimum one- to two-hour fire rating is required between dwelling units.

While building contents are often the initiating source of fuel for fire-related incidents in homes, concrete is not a fuel source that can contribute to fire growth and spread in a building. It is also important to realize that doors, windows, and other penetrations can create a “short-circuit” for fire spread, if not similarly fire-rated in comparison to the walls. Regardless, fire resistance is a recognized benefit of ICF construction and can result in reduced fire insurance premiums.

DURABILITY

Little data is available to exactly quantify durability benefits in the varying use-conditions of building materials. Therefore, experience is often the most reliable guide. Concrete construction is well-known for its durability in building construction. In particular, concrete used in ICF walls is further protected from moisture and other environmental factors. While wood is similarly protected within the walls of a home, it is susceptible to rot in areas where water often penetrates the exterior weather-resistant barrier of a home, particularly in hot/humid climates. Wood materials are also subject to termite attack which can result in significant structural damage and necessitate structural repairs.

To obtain a higher level of durability in wood-frame construction would require additional costs in protecting the wood, either by design and detailing of the building, or by use of preservative-treated wood or naturally decay-resistant wood species. For example, treated lumber is often used for house construction in Hawaii because of severe termite problems. The cost increase relative to typical house construction with untreated lumber is about $0.50 per square foot of wall or approximately 15 percent of the cost difference between ICF and standard wood construction (see Tables 1 and 2). In summary, concrete is able to maintain its structural capabilities over a long period of time and extend the life-expectancy of buildings. Life-expectancy and maintenance of a home is a concern of homebuyers and designers with a long-term perspective.

ENERGY EFFICIENCY

ICF construction, as a result of the use of insulating form materials (i.e., polystyrene foam), provides an inherently high level of thermal resistance. In field comparisons of similar ICF and wood-frame house constructions, it has been found that ICF wall construction can provide a 20 to 25 percent savings in annual heating and cooling costs. To achieve a similar level of energy performance, a typical wood-frame home would require an “energy upgrade” that adds about $2,640 to an average home cost of $200,000 (or about $1.32 per square foot of living area). This amount is equivalent to about one-third of the cost difference between ICF and typical wood-frame house construction reported in Tables 1 and 2.

NOISE CONTROL

The ability of a wall to decrease the amount of sound (or noise) passing through is measured by
testing the wall to give it a rating. This rating is known as the Sound Transmission Class (STC) and can be used to compare the noise control or privacy afforded by various wall constructions. For ICF wall construction, the primary noise control benefit is in the reduction of noise from outside-the-home sources. Control of inside-the-home noise sources may require special detailing of partition walls and floor systems inside the home and is beyond the scope of this document.

First, it is important to understand the difference between various STC ratings as described in Table 7. Since a tolerable level of noise is dependent on the nature of the noise source (e.g., frequency), the individual perception, and other factors, the descriptions of “privacy afforded” given in Table 7 do not indicate an acceptable level of noise suppression. Such determinations are left up to the reader. As a point of reference, for party walls separating attached dwelling units, U.S. building codes usually require a minimum STC rating of 45.

Table 7

<table>
<thead>
<tr>
<th>STC Rating</th>
<th>Privacy Afforded</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Normal speech easily understood</td>
</tr>
<tr>
<td>30</td>
<td>Normal speech heard but not understood</td>
</tr>
<tr>
<td>35</td>
<td>Loud speech heard and somewhat understood</td>
</tr>
<tr>
<td>40</td>
<td>Loud speech heard but not understood</td>
</tr>
<tr>
<td>45</td>
<td>Loud speech barely heard</td>
</tr>
<tr>
<td>50</td>
<td>Shouting barely heard</td>
</tr>
<tr>
<td>55</td>
<td>Shouting not heard</td>
</tr>
</tbody>
</table>

Table 8

<table>
<thead>
<tr>
<th>Wall Construction</th>
<th>STC Ratings</th>
<th>FSTC Rating<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Wood Wall</td>
<td>35 to 49</td>
<td>35</td>
</tr>
<tr>
<td>Enhanced Wood Wall<sup>2</sup></td>
<td>50 to 54</td>
<td>--</td>
</tr>
<tr>
<td>ICF</td>
<td>48 to 58</td>
<td>40</td>
</tr>
</tbody>
</table>

Notes:
1. FSTC is tested in actual field conditions and may be 1 to 5 points lower than STC rating. The FSTC rating also includes the effect of windows and other sources that can “short-circuit” noise control provided by a wall. Therefore, to maximize the sound deadening benefits of ICF construction, enhanced window and door construction should be considered.
2. Enhanced wood wall includes 2x4 @ 16"oc, resilient channels 24"oc, 5/8" gyp board both sides, and 3-1/2 inch batt insulation.

Data on the STC ratings of ICF and wood walls are summarized in Table 8. ICF construction provides a clear benefit relative to typical wood-frame wall construction. To obtain similar performance from a wood-frame wall, certain enhancements are required (i.e., thicker gypsum board layers, resilient channels, acoustic insulation, etc.). These enhancements can add about $0.70 per gross square foot of wall area, which accounts for about one-fifth of the cost difference between ICF and standard wood-frame construction (refer to Tables 1 and 2).

Cost-Benefit Evaluation

General

ICF construction, while generally more expensive than standard wood-frame construction, has several performance benefits that require consideration relative to first cost, monthly (operating) costs, and comparative performance of standard wood-frame construction. Comparative cost-benefits with respect to energy efficiency is addressed in the next section, Monthly Costs. The assignment of a dollar value was found to be difficult for other performance attributes such as structural safety, durability, fire resistance, and noise control for a
variety of reasons, including lack of reliable data or the inherent subjective or non-economic ‘value’ associated with a particular performance attribute (i.e., noise control). Recognizing that there are important differences in performance and value, however, a comparison of relative performance and cost to achieve ‘equivalent’ performance is presented in Section 5.3 based on the data presented in Sections 3 and 4.

MONTHLY COSTS

Since most homes are purchased using mortgages, the monthly cost of home ownership is primarily related to financing. Thus, interest rate and the term of the loan (usually 15 or 30 years) are key factors that govern monthly and overall cost. Any increase in the first cost of a home will directly affect the monthly mortgage payment and the amount paid in principal and interest over the term of the loan. However, certain benefits that come at additional first cost may convey a net cost savings over the term of a mortgage or period of ownership.

Key monthly or periodic costs include:

- mortgage (principal and interest);
- utilities (electric, gas, etc.);
- home owner’s insurance (required by mortgager, optional otherwise);
- maintenance (painting, repairs, etc.); and
- taxes.

Maintenance and long-term replacement costs are not factored in to the monthly cost comparison of Table 9 because of the lack of reliable data on this issue, particularly for ICF homes. Table 9 compares a standard wood-frame home to a typical ICF home in terms of monthly housing cost. Also included is a wood-frame home with an upgraded energy package that compares more closely with the energy efficiency of typical ICF construction. Long-term maintenance and repair costs are not included. Monthly maintenance and repair costs for a typical home is about $25 to $50.

TABLE 9
COMPARISON OF TYPICAL MONTHLY COSTS OF HOME OWNERSHIP

<table>
<thead>
<tr>
<th></th>
<th>STANDARD WOOD HOME</th>
<th>UP-GRADED WOOD HOME</th>
<th>TYPICAL ICF HOME</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchase Price</td>
<td>200,000</td>
<td>202,640</td>
<td>208,000</td>
<td>ICF 4% more</td>
</tr>
<tr>
<td>Principal and Interest</td>
<td>1,119</td>
<td>1,133</td>
<td>1,163</td>
<td>7.5% interest/20% down</td>
</tr>
<tr>
<td>Taxes</td>
<td>300</td>
<td>304</td>
<td>312</td>
<td>.15% tax rate</td>
</tr>
<tr>
<td>Insurance</td>
<td>25</td>
<td>25.33</td>
<td>22.50</td>
<td>10% savings</td>
</tr>
<tr>
<td>Energy</td>
<td>145</td>
<td>116</td>
<td>116</td>
<td>20% savings</td>
</tr>
<tr>
<td>Total Monthly Cost</td>
<td>1,589</td>
<td>1,578.33</td>
<td>1,613</td>
<td>ICF is $24 to $35 more per month</td>
</tr>
</tbody>
</table>

Notes:
1. Values for standard wood home and typical ICF home are based on similar data found at www.pca.org.
2. Upgraded wood home includes a typical energy efficiency option of 2x6 studs, R13 fiberglass batt insulation, and 1-inch exterior foam insulation.

TABLE 10
COMPARISON OF RELATIVE PERFORMANCE

<table>
<thead>
<tr>
<th>PERFORMANCE CHARACTERISTIC</th>
<th>ABOVE-GRADE WALL CONSTRUCTION TYPE</th>
<th>CONCRETE (ICF)</th>
<th>WOOD-FRAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety and Damage Prevention</td>
<td>Excellent</td>
<td>Adequate to Good</td>
<td></td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>Excellent</td>
<td>Adequate to Excellent</td>
<td></td>
</tr>
<tr>
<td>Fire Resistance</td>
<td>Excellent</td>
<td>Adequate</td>
<td></td>
</tr>
<tr>
<td>Durability</td>
<td>Excellent</td>
<td>Adequate</td>
<td></td>
</tr>
<tr>
<td>Sound Control</td>
<td>Excellent</td>
<td>Adequate to Good</td>
<td></td>
</tr>
</tbody>
</table>
Cost Benefit of Insulated Concrete Forms (ICF)

COST COMPARISON BASED ON EQUIVALENT PERFORMANCE

A summary of cost increases to standard wood-frame construction to achieve (or nearly achieve) a level of performance comparable to ICF construction for various performance attributes is shown in Table II. It can be seen that if comparable performance is desired on all counts, the cost of an upgraded wood-frame home can exceed that of ICF house construction. However, if only one performance attribute is of concern, such as energy efficiency, the option to upgrade wood-frame construction is more economical. Conversely, ICF construction compares most favorably in the area of structural safety where the cost to upgrade wood framing to similar performance is greatest, particularly in areas with high wind hazard.

TABLE II

COST TO UPGRADE WOOD-FRAME WALL PERFORMANCE

<table>
<thead>
<tr>
<th>PERFORMANCE CHARACTERISTIC</th>
<th>PERCENTAGE OF COST DIFFERENCE BETWEEN ICF AND STANDARD WOOD CONSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety & Hazard Mitigation</td>
<td>50% or more</td>
</tr>
<tr>
<td>Fire Resistance</td>
<td>Not considered practical to upgrade</td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>33%</td>
</tr>
<tr>
<td>Durability</td>
<td>15%</td>
</tr>
<tr>
<td>Sound Control</td>
<td>20%</td>
</tr>
<tr>
<td>Total</td>
<td>118%</td>
</tr>
</tbody>
</table>

Notes:
1. Table values are based on data presented within the report.
2. Cost difference between ICF and standard wood construction is found in Tables 1 and 2. This difference is about $3.99 per square foot of floor area, $3.47 per square foot of gross wall area, or about $7,000 for a typical 1,800 sq ft house plan costing an average $208,000.

CONCLUSIONS

1. ICF construction costs about three to five percent more than a typical new home and land in today's market (about five to ten percent of house-only construction cost).
2. Relative to standard housing construction practices, ICF construction offers several performance benefits.
3. Based on any single benefit of ICF construction, it is generally more economical to consider upgrading standard wood-frame construction to achieve "equivalent" performance.
4. It is generally more economical or practical to consider ICF construction based on the collective benefits.
5. The individual performance attribute which has greatest technical significance to ICF construction is structural safety.
6. Based on the above conclusions, the cost-benefits of ICF construction are most appealing when considered as a "package deal" with special emphasis on structural performance, particularly in extreme wind environments.

Quiz Questions

The following twenty (20) question quiz will test the student’s comprehension of the course. The student must pass this quiz with a score greater than 70%.

Question 1: ICF wall construction generally adds about ________ to the total purchase price of a typical wood-frame home.

a) 3 to 5 percent
b) 5 to 10 percent
c) 10 percent
d) 17 percent

Question 2: According to Table 1, the cost difference of wall construction per square foot of wall area for ICF, compared to the cost of wood, on an economy one-story home is,

a) $2.19
b) $2.25
c) $4.56B
d) $3.47

Question 3: In Figure 4, the estimated chance of death by tornado is about,

a) 15 percent
b) 5 percent
c) 2 percent
d) 0.002 percent

Question 4: According to Table 3, ICF wall construction provides approximately ________ racking resistance of conventional wood-frame walls.

a) identical
b) less than half of the
c) more than 4 times the
d) only slightly greater

Question 5: Regarding energy efficiency, ICF wall construction can provide a _____ savings in annual heating and cooling costs.

a) 20 to 25 percent
b) 10 to 15 percent
c) 50 percent
d) 5 to 10 percent

Question 6: Per Table 7, at an STC rating of 45,

a) shouting is barely heard
b) loud speech is barely heard
c) shouting is not heard
d) normal speech is easily understood

Question 7: ICF walls can generally sustain as much as ________ of extreme fire exposure.

a) four hours
b) 1 hour
c) 30 minutes
d) None of the above
Question 8: The monthly cost of home ownership is primarily related to,
 a) Utilities
 b) Maintenance
 c) Financing
 d) Insurance

Question 9: According to table 10, the relative performance of an ICF home compared to a wood-frame home with regards to ______, an ICF home the performance is greater.
 a) durability
 b) energy efficiency
 c) fire resistance
 d) sound control
 e) all of the above

Question 10: A valid conclusion regarding ICF residential construction could be that,
 a) it is generally more economical or practical to consider ICF construction based on the collective benefits
 b) it is generally more economical or practical to consider wood construction based on the collective benefits
 c) wood construction is more practical
 d) ICF construction is more economical

Question 11: An ICF home offers better performance in surviving natural disasters, except,
 a) Flooding
 b) Tornados
 c) Hurricanes
 d) None of the above

Question 12: On average, the additional cost of ICF construction (per square foot of floor area) is about _____ when compared to typical wood-frame house construction
 a) $1.00
 b) $1.50
 c) $4.00
 d) $10.00

Question 13: In regards to Figure 4, which of the following is not considered an “Act of God”?
 a) Hail/Mudslides
 b) T-storm
 c) Floods
 d) Fires

Question 14: In regards to Tornado activity, which location has the least probability of experiencing a tornado?
 a) North West Wisconsin
 b) Southern Wisconsin
 c) Central Wisconsin
 d) Milwaukee
Question 15: The role of building codes is to,
 a) Establish a minimum level of risk that is considered to be socially acceptable on national and local or regional scales
 b) Establish a maximum level of risk that is considered to be socially acceptable on national and local or regional scales
 c) Eliminate all risks
 d) All of the above

Question 16: The full benefit of ICF wall construction may not be realized when used with wood-frame roofs, unless?
 a) Regardless of reinforcing the roof, the full benefit is always realized
 b) The ICF wall is reinforced which can be achieved through the use of additional fasteners
 c) Reinforcement can be achieved by the use of additional fasteners in roof sheathing and enhanced connections between an ICF wall and a roof system by use of metal tie straps or other similar devices
 d) None of the above

Question 17: An ICF home will have about ______ savings in annual heating and cooling cost.
 a) 5 to 10 percent
 b) 10 to 15 percent
 c) 15 to 20 percent
 d) 20 to 25 percent

Question 18: For a wood-framed wall to achieve the same sound suppression ability as an ICF wall, it would cost approximately how much to upgrade the wood-framed wall?
 a) $0.35/sq ft
 b) $0.70/sq ft
 c) $1.40/sq ft
 d) Not achievable

Question 19: Cost increases to standard wood-frame construction to achieve (or nearly achieve) a level of performance comparable to ICF construction,
 a) Exceeds that of an ICF home construction
 b) Is less than that of an ICF home construction
 c) Is the same as that of an ICF home construction
 d) Cannot be compared

Question 20: An ICF home costs approximately ______ more to build (home constructions costs only) than a typical wood-framed home?
 a) 25%
 b) 15 to 20%
 c) 10 to 15%
 d) 5 to 10%